Surviving Weather Extremes of Heat and Humidity

> Mike Richardson, Ph.D. University of Arkansas http://turf.uark.edu mricha@uark.edu

First advice... bury the bad memories of 20

Photo courtesy of Pat Obrien

TURF DISEASES

By University Professors

Turf Disease blog posts this past summer:

Poa annua takes a dump
 Jim Kerns

- Heat + Rain = Dead Grass
 - Brandon Horvath
- No wind = Dead grass
 - Lane Tredway

Heat wreaking havoc on golf courses nationwide

- John Kaminski and Clark Throssell
- Relentless heat and humidity
 - Megan Kennelly

What caused cool-season grass decline/failure in 2010?

- High temperature
- High humidity
- Excessive rain
- Excessive drought
- Poor air flow
- Pathogens

- Intense cultural practices
- Traffic
- Economic issues

Temperature/rainfall variation from 30-yr average

Loss of turf associated with heat / drought stress

Photo courtesy of Pete Landschoot

Poor rooting associated with surface organic matter resulting in drought stress

Photo courtesy of Bud White

Surface organic matter resulting in weak root system and aenarobic layer

Photo courtesy of Brandon Horvath

Tough economy leads to more tri-plex mowing, which caused major traffic

problems

Photo courtesy of Pat Obrien

Thin turf leading to algae or moss infestations

A Long to All all address of the first

Photo courtesy of Brandon Horvath

Photo courtesy of Pat Obrien

Were pathogens part of the problem? Apparently...

Preventative fungicide program

Untreated

Photo courtesy of Brandon Horvath

Major air-flow issues – that one fan is not going to be enough...

Photo courtesy of Bud White

Wet wilt associated with poor air flow

Photo courtesy of Adam Mueller

Poor air flow – notice the location of the only healthy turf on the green

Photo courtesy of Adam Mueller

Photo courtesy of Pat Obrien

Problems were not just localized to putting greens

Photo courtesy of Trey Rogers

Brown patch and pythium wreck a tall fescue trial at our research facility

July 15, 2010 - brown patch symptoms first show up on tall fescue

July 29, 2010 - 2 weeks later and there is nothing left

There were no silver bullets in 2010 – is there one for 2011?

There were no silver bullets in 2010 – is there one for 2011?

Bermudagrass greens!!

Thursday, Feb. 10, 2011 – Fayetteville AR – all time record low for the state at -18 °F

The root of the problem – extended high temperatures

Respiration Energy

$CO_2 + H_2O \leftarrow (CH_2O)_n + O_2 + H_2O \leftarrow O_2 + H_2O + H_2O \leftarrow O_2 + H_2$

 Provides energy and metabolites for cellular growth and maintenance.

Effect of increasing temperature on photosynthesis and respiration of creeping bentgrass

Photorespiration \rightarrow loss of CO₂

Factors that increase photo-respiration:High temperatures

Drought stress

Photosynthesis \rightarrow gain of CO₂

Overall carbon budget of plants

Effects of air vs. soil temperature on root growth of creeping bentgrass

What to do when times get this tough?

- A strong foundation is still the key to success
- Air flow and water management are even more critical
- Communication with your management / members should be at an all-time high

Minimize injury from common management practices

Photo courtesy of Bud White

Improve your water management through the use of motion stressensors

Do whatever it takes to get air moving, including the use of temporary fans

Photo courtesy of Pat Obrien

More frequent venting of greens with either water-injection or needle tines

Photo courtesy of Pat Obrien

Desperate times call for desperate measures...

Photo courtesy of Bud White

The desire for faster green speeds has driven superintendents to more aggressive mowing and rolling practices

Mowing, rolling, and foot traffic study objectives

Better understand the physiological effects of these treatment combinations under summer stress on bentgrass putting greens
Measure photosynthetic rates
Identify carbohydrates in plants
Evaluate root development

Does increasing mowing heights and rolling greens really result in healthier turf?

Mowing and rolling treatments

Mowing 6 days/wk with a Toro Flex-21 Walkbehind mower • 0.100 inch • 0.125 inch • 0.156 inch

Rolling treatments applied with a Tru-Turf Roller

- 0 times/wk
- 3 times/wk
- •6 times/wk

Thanks – any questions ??

Mike Richardson, Ph.D. University of Arkansas mricha@uark.edu http://turf.uark.edu