RUTGERS

New Jersey Agricultural Experiment Station

Cultural Control Strategies for Anthracnose

James Murphy, Ph.D.
John Inguagiato, Ph.D.
Bruce Clarke, Ph.D.

Joseph Roberts, Charles Schmid, James Hempfling, and Ruying Wang

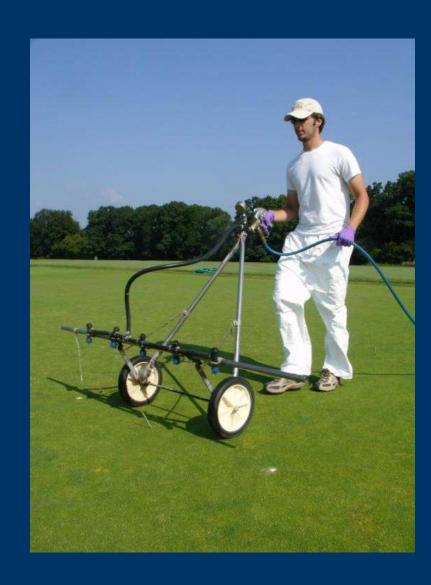
NE-1025 Multi-State Research Project

- Reported initial findings of cultural management affects on disease in GCM (Murphy et al., 2008)
- Update our conclusions on nitrogen fertility, topdressing, and irrigation
- Summarize our understanding of all best management practices (BMPs) for anthracnose

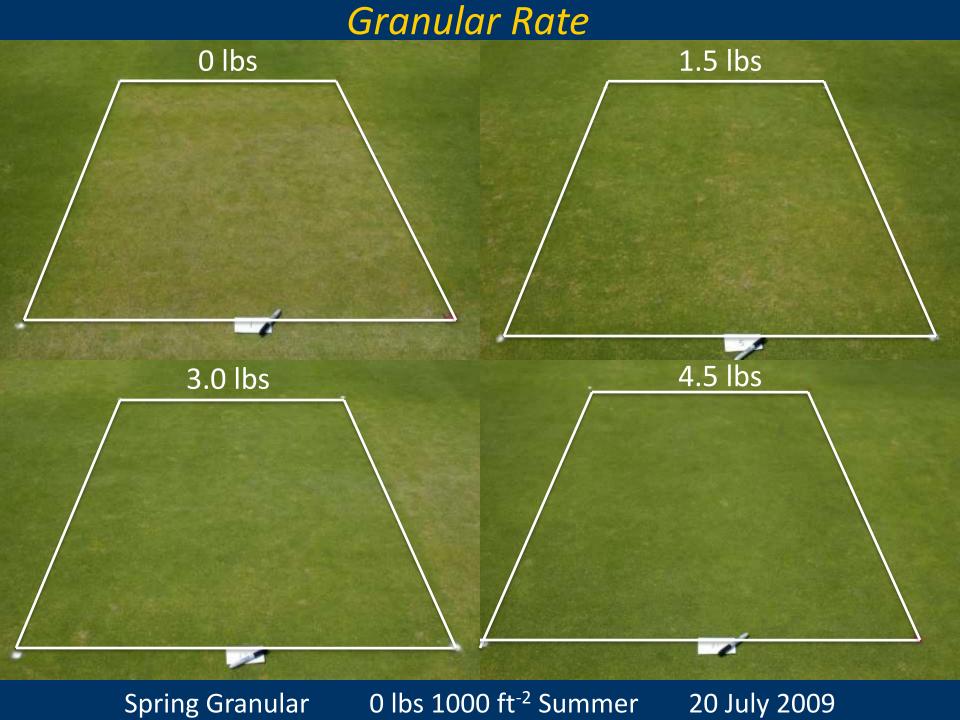
 Crucial to the health and vigor of the turf, which, in turn, affects playability

• 0.1 lb per 1000-ft² per week (late spring

through summer)
reduces anthracnose
compared to
every month

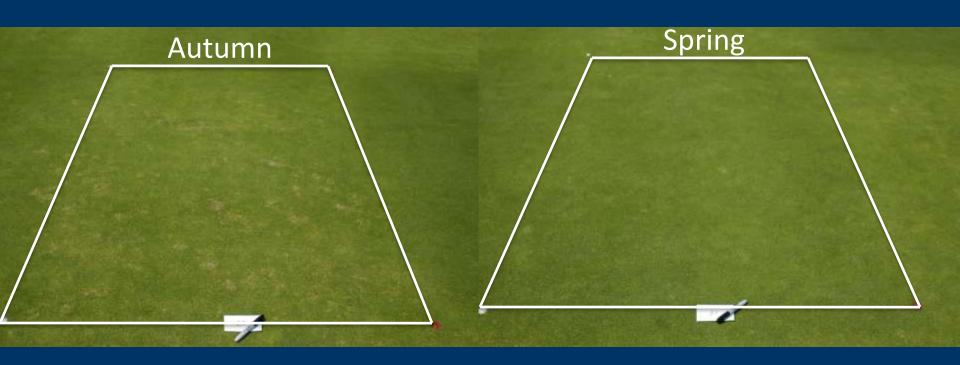

• 0.2 lb per 1000-ft² per week is better

Summer N Rate



- N at 0.4 to 0.5 lb per 1000-ft² per week very effective at reducing anthracnose
- However, these rates continued into the summer dramatically increase disease

Granular-N (slow release)


 Higher rates of N applied before the disease becomes severe (spring) reduces anthracnose severity

 Granular-N applied in the fall affects disease severity but requires more N compared to spring apps (at least 1.5 lb or more per 1,000 ft² annually)

Season of Granular N

Granular N at 4.5 lb per 1,000-ft²

20 July 2009

No Summer N (0 lbs per 1000ft²)

Putting greens with a history of anthracnose

- Re-evaluate the distribution of N fertilization
- Late-season N is not an efficient timing to manage anthracnose disease
 - Summer timing much more effective
 - Spring compliments the summer program

- Recent studies indicate that N source affects anthracnose severity
- Potassium nitrate reduced disease severity; whereas, ammonium sulfate increased anthracnose compared to urea, ammonium nitrate, and calcium nitrate
- Currently assessing whether it is a N source, soil pH, and/or K effect

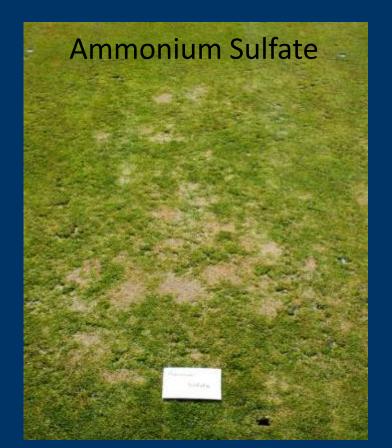
Snow Melt / Ice Damage

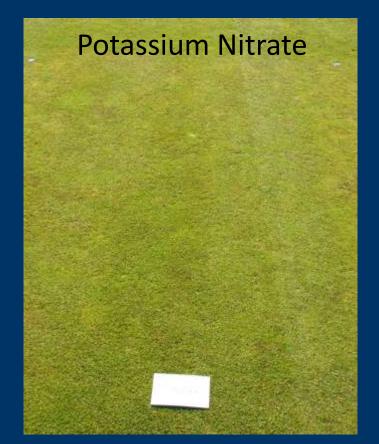
Potassium Nitrate

Ammonium Sulfate

N Source and Winter Injury

Calcium Nitrate




Potassium Nitrate

Summer - weekly apps of 0.1 lb 1000-ft⁻² of respective N source Fall - three 1 lb 1000-ft⁻² apps (25 Sept., 15 Oct. and 11 Nov.)

 More research to confirm but soil pH and/or K deficiency may be important

Sand Topdressing

Modify thatch/soil

Smooth the surface

Crown protection

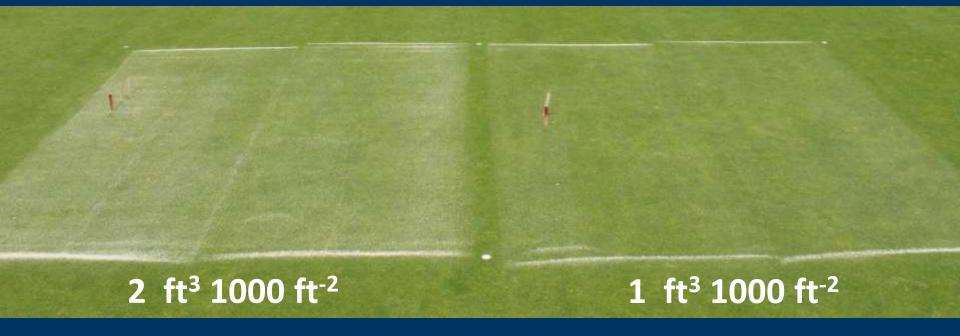
Winter protection

Topdressing Practices

 Frequent, topdressing (1 or 2 ft³ per 1,000-ft² every 7 or 14 days) reduces anthracnose

Benefit also true under conditions of intense

foot traffic



Benefit of Sand Topdressing

Topdressing Practices

 Summer topdressing, while successful, has challenges that limit implementation

Topdressing Practices

 Research indicates that both fall and spring applications reduce anthracnose severity

Spring topdressing is the most beneficial

timing

Irrigation Management

 Turf growing in saturated soil due to poor surface and slow internal drainage is more susceptible to anthracnose (Sprague and Evaul, 1930; Vargas and Turgeon, 2004).

Irrigation Management

- Field research has confirmed that drought stress also increases anthracnose severity on annual bluegrass
- Specifically, deficit irrigation that subjects turf to frequent wilt stress during warm dry weather (e.g., 40 and 60% ET_o) will increase anthracnose disease

Verticutting

- Used to improve surface playability and reduce other problems associated with thatch
- Reputed to enhance anthracnose due to wounding of tissue

Verti-cutting

 Recent detailed studies of mechanical injury indicates that neither wounding of leaves, crowns, nor stolons dramatically affects anthracnose severity

Nitrogen Fertility – maintain turf vigor

- Spring N at 1 to 2 lb per 1000-ft² (rather than autumn)
- Up to 3 lb per 1,000-ft² in spring if disease pressure is severe
- At higher rates, include slow release nitrogen

Nitrogen Fertility – maintain turf vigor

- Begin light-frequent N early in the year
- 1.5 to 3 lb of N per 1000 ft² over summer
- At higher summer rates, likely to need less N the spring;
- ...however, higher spring N recommended if anthracnose is severe by mid spring

Topdressing

- Spring topdressing very beneficial (e.g., 4 to 8 ft³ per 1,000-ft²) if summer topdressing is minimal
- Spring topdressing more effective than fall
- Weekly or bi-weekly sand topdressing at 1 or 2 ft³ per 1,000 ft² during summer

Topdressing

- Incorporate sand to minimize wear on mowing equipment – incorporation doesn't affect disease
- Foot traffic over topdressed turf does not increase disease severity; in fact, it reduces the severity!

Irrigation

- Wilt stress or excessively wet conditions will increase anthracnose
- Irrigate at 60 80% of ET_o and hand water to avoid wilt stress
- Correct surface drainage restrictions

Verti-cutting and other cultivation

- CANNOT confirm that wounding from these practices increases disease
- Do not avoid the use of verti-cutting or other cultivation practices if needed

Mowing and Rolling

- Avoid mowing below 0.125 inch ("fixed" head)
- To achieve ball roll of ~10 ft at higher mowing heights, light-weight roll and/or increase mowing frequency
- Rolling every other day may slightly reduce anthracnose

Plant Growth Regulators

- Trinexapac-ethyl (Primo MAXX)
 Mefluidide (Embark)
 Ethephon (Proxy) have minimal effects
- Benefits of improved tolerance to low mowing, enhanced plant health, and seedhead suppression outweigh any potential negative effects

