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Sustainable Turfgrass Systems 

• More than inputs 

• More than pest control 

• More than conservation 

 

Is about connecting the landscape to the 
community in ways that benefits both.  What 
value is turfgrass to the community?   



Demands will increase… 

• Growth and urbanization will increase need 
for human-managed landscapes dependent 
on energy intensive inputs (Milesi, et al., 
2005). 

jrnh.ne 



…while resources decrease. 

• “…energy-intensive products used to maintain 
turfgrass will be much less available…” Busey 
and Parker (1992)  
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Turf Quality vs. Inputs 

Zone of normal operation today 
• Best we can do with info we have 
• Safe  

 

Zone of maximum efficiency 
• Highest turf quality for the least inputs 

Environmental impact 

Costs 

Player satisfaction 
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N2 = 15.0% 
(±0.77) 

N2O = 5.6% (±2.4) 

0-5cm = 14.5% (±0.39) 

5-10cm = 1.5% (±0.08) 

10-20cm = 2.5% 
(±0.37) 

>20 cm = 1.0% (±0.13) 

plant = 21.6% 
(±2.3) 

Total LFN recovery = 61.7% 

Summer:  Balance of Fertilizer Applied 
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Age -vs- N Accumulation in 

Turf  

Total N in surface soil (0-10 cm) as a function of age.  Porter et al., 1980 



Age -vs- Carbon Storage in Turf  

Qian and Follett, 2002 



Older Turf Sites 

“Older turf sites should be fertilized at a 

rate equal to the rate of removal by the 

plant and loss to the atmosphere.  Thus 

old turf sites should be fertilized less to 

reduce the potential for NO3
- leaching.” 

 

Petrovic, A.M., 1990. 

 



1998 - 2010 



1 lb/M 

0.5 lb/M 

1 lb/M 0.5 lb/M 

SEPTEMBER 

1 lb/M 0.5 lb/M 1 lb/M 0.5 lb/M 

OCTOBER NOVEMBER 



Mass Flow 

Mass flow accounts for 85% of  N uptake 
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Fertilizers Plant residue 

inputs 

Erosion, runoff 
Surface water 

Soil  

processes 

Plant uptake 

Fixed P 
Clays 

Al, Fe oxides 

Active P 
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phosphates 

Primary P 
minerals 
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Soil Solution P 
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sorption 
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Organic P 

•soil biomass (living) 

•soil organic matter 

•soluble organic P 

mineralization 

immobilization 

Cultural  

practices 





Shallow eutrophic lakes exist in 2 
states: 

1. Clear and dominated by 
macrophytes  

    - dense growths of rooted plants 
that stabilize sediments, slowing 
nutrient recycling and shelter 
phytoplankton grazers.  

 
2. Turbid and dominated by 

phytoplankton 
    - dense phytoplankton growth 

driven by nutrient recycling from 
sediments. 

    - shading by phytoplankton blocks 
the growth of attached plants. 

Lake Ecosystem Degradation & Restoration 



The existence of alternative stable states makes lake 
restoration notoriously difficult 
Multiple attempts, multiple techniques often necessary to “flip” the system. 



Significant Runoff Factors 
( Easton and Petrovic, 2004) 
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Fertility Effect on Total and Soluble Phosphorus Runoff (2005) per Event 
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Solid Tine Aeration Hollow Tine Aeration 
VS. 

Management Practices to Mitigate Chemical Transport with Runoff 

Aeration: Solid Tine vs. Hollow Tine 



Hollow vs. Solid Tine Aerification 

 Reduced Runoff Volumes with Hollow Tine 

2 Days Before Management Practice and Runoff
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Runoff volume 

 55% reduction with hollow tine aerification (2 d) 
 

 10% reduction with hollow tine aerification (63 d) 

(2 and 63 days between aerification and runoff) 

63 Days Between Management Practice and Runoff
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Hollow vs. Solid Tine Aerification  

 Reduced Nutrient Loss in Runoff with Hollow Tine 

Soluble-P 

 44% reduction with HT 

 
NH4-N 

 39% reduction with HT 
 

NO3-N 

 77% reduction with HT 

 

2 Days Between Management 

Practice and Runoff 
2 Days Between Management Practice and Runoff
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What We’ve Learned 

• Reducing runoff volume with 

management practices will reduce 

chemical loading offsite 

• Soil test to determine P need 

• Fertilize when plants actively growing 

• Consider environmental site-risk 

assessment 

• Proper fertilization will prevent 

degradation of water quality 



Good but can be Better 

• Fate and transport is complex 

• Long term research is vital to tell the story 

• Connect golf courses as a community and 

environmental asset 

• Disproportionality theory 

• Simple adjustments in practices can yield 

huge environmental benefits 


